
Juice Shop – Application Design Doc
SEC353 supporting material

Overview

Juice Shop is an online e-commerce store for organic, high-quality, fruit & vegetable juice
products. The main of goal Juice Shop is to provide customers across the globe access to our
delicious fruit & vegetable juice products, in addition to other categories of Juice Shop-branded
merchandise such as one-of-a-kind artwork, swag (such as shirts, stickers, temporary tattoos,
3D-printed logos), digital content (like a Juice Shop-themed DLC for Table Top Simulator), and
more!

As the storefront for our business, the Juice Shop e-commerce platform must provide all the
relevant functionality that customers may require. This includes account management, product
discovery and detail pages, shopping cart functionality with a checkout flow, and
internationalization support to allow customers across the globe to purchase items.

Juice Shop must also be built and deployed using technology that meets our security,
availability, performance, and monitoring standards.

Functional Requirements

In this section we’ll detail the specific requirements that the Juice Shop e-commerce platform
must satisfy to be a viable product for our customers, broken down by functional section:

Shopping Experience

Customers must be able to browse a paginated table of Juice Shop items for sale, with
each item having its own detail page. An item includes a title, a picture, description, and
price. All items support customer-submitted reviews.

Juice Shop must support an item search feature to allow customers to find a particular item
by title
Juice Shop must support a shopping basked experience, where customers can add one or
more items to their basket prior to checkout

Account Management

Security & privacy features

Customer feedback for Juice Shop

High-Level System Architecture

Juice Shop will be architected using a modern, microservices-inspired approach while
maintaining simplicity of deployment and operational overhead. The system will be structured in
layers, with components built through APIs to interface other components.

The main three components will be:

Juice Shop must support customer accounts. Customers can only add-to-cart when they
are logged in, not as unauthenticated users. Support for login and logout is required.
Juice Shop must support email & password accounts, as well as Google social login
A Juice Shop user profile must support a custom username, and a profile picture - either
uploaded directly or linked via URL

A Juice Shop account must make available to the user: their order history, saved addresses,
payment options (credit card, digital wallets)

Juice Shop must allow customers to request a complete data erasure
Juice Shop must allow customers to export the user-specific data that the site has stored
Juice Shop must support 2FA, password reset, and a screen to show the last location the
user has accessed the site from

Juice Shop must allow customers to provide feedback to the Juice Shop team, this should
support free text submissions and/or a numeric rating
Customers must be able to access a Photo Wall page on the site, showing off real-world
photos shared by other users of Juice Shop products in public

Customers must be able to interact with a Juice Shop chatbot for real-time question and
answer about the site and their account
Customers must be able to view on the site details about the history of Juice Shop, that
includes recent feedback from other users and links to our social pages.

1. A frontend web application that is responsible for rendering Juice Shop, and navigates the
user through the various flows described in the Functional Requirements section

Technology Stack

Frontend: Juice Shop’s frontend application will be implemented using Angular & Material, a
batteries-included JavaScript framework for building complex single page applications (SPA)
with a modern UI supported out of the box.

API components: JavaScript is used exclusively in the backend API services. An Express
application will be built and hosted via Node.js to deliver a RESTful to the frontend.

Data storage: For data persistence, Juice Shop will deploy a SQLite database to store all
relational data. This includes info for users, products, payments, shopping carts, etc. A
Sequelize ORM will be used to manage access to SQLite from the Express application.
Additionally, a MarsDB instance will be added to store user reviews and order information in a
NoSQL structure. Third, Juice Shop will host an FTP server as a convenient method to store
company information, including planned business decisions, private customer incident
information, and metadata on deployed software packages for maintainers to reference.

Juice Shop uses SQLite3 as its persistence layer with Sequelize ORM for data modeling and
query abstraction. The database file is stored at
data/juiceshop.sqlite and is created on first application startup.

2. A REST API layer that powers the web application. This API layer implements the business
logic to facilitate customers’ usage of the web application.

3. A SQLite database and file storage solution that will hold customers’ information, item
listings, and other information for the Juice Shop store.

API Application Design

Juice Shop is a Node.js application built on Express. It's architected as a monolithic application
with individual APIs for business functions and clear separation of concerns in implementation.

Entry Point Flow

Key Bootstrap Sequence:

Request Processing Pipeline

app.ts → server.ts → start() → HTTP server listening

1. Initialization (server.ts)
Loads middleware libraries (cors, rate-limiting, etc.)
Cleanup FTP file folder

2. Database Initialization (models/index.ts)
Creates Sequelize instance with SQLite
Initializes 20 models in specific order

Establishes relationships via relationsInit()

3. Data Seeding (data/datacreator.ts)
Runs sequelize.sync({ force: true }) - drops and recreates all tables

Seeds data in dependency order:

SecurityQuestions → Users → Challenges → Products →
Baskets → BasketItems → Feedback → Complaints → etc.

4. Server Start

Binds to port (default 3000)

Incoming Request
 ↓
1. CORS (allow all origins)
 ↓
2. Metrics Collection (Prometheus)
 ↓
3. Body Parsing (urlencoded → text → custom JSON)
 ↓
4. Access Logging (rotating file)

Authentication & Authorization Design

Access logging

Access logging will be enabled for the Express application using the winston library, a popular
utility for web applications. Each API in Juice Shop will use a centralized logger to record events
to local, rotated files. These logs will contain information about the request made, the response
status code, and any errors that occurred during processing.

Sensitive information such as customer secrets, payment information, and Personally
Identifiable Information (PII) will be redacted using a specialized winston log formatter, or by
using the supported "rewriter" functionality.

DEBUG and INFO logging will not be supported in production environments, preventing noise
and protecting internal application state from being viewed through logging events.

 ↓
5. Rate Limiting (selective endpoints)
 ↓
6. Authentication
 ↓
7. Authorization (custom middleware)
 ↓
8. Route Handler
 ↓
9. Error Handler
 ↓
Response

1. Route-level (applied to entire route groups):

app.use('/rest/basket', security.isAuthorized(), security.appendUserId())
app.use('/api/BasketItems', security.isAuthorized())

2. Method-level (HTTP verb restrictions):

app.post('/api/Products', security.isAuthorized())
app.delete('/api/Products/:id', security.denyAll())

3. Role-based (accounting, admin):

app.use('/api/Quantitys/:id',
 security.isAccounting(),
 IpFilter(['123.456.789'], { mode: 'allow' })
)

Logging will cover the following security-related events for the application:

Each log event will include the following fields to support further investigation: User identity,
timestamp of access, source IP address, and metadata on request outcome.

Logs will be hardened against tampering by appending a fingerprint with each log event. Only
team members with the special Operator role will be permitted to access log files. Out-of-date
log files will be promptly deleted upon rotation to prevent accidental modification of prior data.

Access logs will be retained for at least one year, accessible only by the security team through
a ticketed process. Logs will be monitored actively by the team and connected to automated
alarms for detection of anomalous activity (example scenario: many login attempts from
different IP addresses). Based on testing, there is confirmation this logging setup provides the
necessary context for investigating operational and security events.

Database Access Patterns

API Generation Strategy

Finale-REST (auto-generates CRUD endpoints):

1. All basic API activity including purchases, feedback submission and User profile changes

2. Monitor access to administrative operations that include sensitive data
3. Monitor login and logout access patterns, like high rate of authorization failures (example

threshold: > 5 attempts per User)
4. Monitor customer requests for data exports

1. Sequelize ORM:

UserModel.findOne({ where: { email: req.body.email } })

2. Raw SQL:

models.sequelize.query(
 `SELECT * FROM Users WHERE email = '${req.body.email}'
 AND password = '${security.hash(req.body.password)}'`
)

3. NoSQL for reviews and other document content:

// data/nosql.ts
reviewsCollection.insert({ productId, message, author })

const autoModels = [
 { name: 'User', exclude: ['password', 'totpSecret'], model: UserModel },
 { name: 'Product', exclude: [], model: ProductModel },

Generated endpoints:

Custom REST Routes

Pattern: Functional route handlers

Route organization:

 // ... 14 models total
]

for (const { name, exclude, model } of autoModels) {
 finale.resource({
 model,
 endpoints: [`/api/${name}s`, `/api/${name}s/:id`],
 excludeAttributes: exclude,
 pagination: false
 })
}

GET /api/Users - list all users
GET /api/Users/:id - get user by ID
POST /api/Users - create user
PUT /api/Users/:id - update user

DELETE /api/Users/:id - delete user
etc.**

// routes/login.ts
export function login() {
 return (req: Request, res: Response, next: NextFunction) => {
 // Login logic
 }
}

// server.ts
app.post('/rest/user/login', login())

/api/* - Auto-generated CRUD (Finale)
/rest/* - Custom business logic

Internationalization (i18n)

Translation Strategy

Backend i18n:

Frontend i18n:

On-the-fly translation (Finale hooks):

Monitoring & Observability

Prometheus Metrics

Startup metrics:

i18n.configure({
 locales: ['en', 'de', 'es', 'fr', ...], // 40+ languages
 directory: path.resolve('i18n'),
 cookie: 'language',
 defaultLocale: 'en',
 autoReload: true
})

// Usage in routes
res.send(res.__('Invalid email or password.'))

Angular i18n with JSON files in frontend/src/assets/i18n/

Dynamic loading based on user preference

resource.list.fetch.after((req, res, context) => {
 for (let i = 0; i < context.instance.length; i++) {
 context.instance[i].description =
req.__(context.instance[i].description)
 }
})

const startupGauge = new Prometheus.Gauge({
 name: `${appName}_startup_duration_seconds`,
 help: 'Duration required to perform startup tasks',
 labelNames: ['task']
})

Request metrics:

Metrics endpoint:

Frontend Design

The Juice Shop frontend is an Angular 20 single-page application. The application
demonstrates modern Angular patterns including standalone components, reactive
programming with RxJS, and Material Design integration

Design Principles

The frontend architecture follows several key principles that guide implementation decisions:

Separation of Concerns: Components handle presentation and user interaction, while
services manage business logic, HTTP communication, and state.

Reactive Programming : We embrace RxJS observables throughout the application rather
than promises or callbacks. This provides consistent async handling, powerful composition
operators, and built-in cancellation support.

Application Bootstrap and Initialization

The application uses Angular's bootstrapApplication function. All
providers, including services, guards, and configuration, are registered directly in the bootstrap
configuration.

Environment Detection: First, we check if we're running in production mode and enable
optimizations accordingly. This affects things like change
detection strategy, error handling verbosity, and source map generation.

// Measure async operations
const end = startupGauge.startTimer({ task: 'datacreator' })
await datacreator()
end()

app.use(metrics.observeRequestMetricsMiddleware())
app.use(metrics.observeFileUploadMetricsMiddleware())

app.get('/metrics', metrics.serveMetrics()) // Public metrics endpoint

HTTP Interceptor Registration: A global HTTP interceptor is registered to automatically inject
JWTs (signature optional for testing) into all outgoing requests. This
centralizes authentication header management and eliminates the need for services to
manually handle auth tokens.

Internationalization Setup: The ngx-translate module is configured with an HTTP loader
that fetches translation files on demand. This allows us to support 40+ languages without
loading all translations upfront.

Service Registration: All services are registered as singleton providers at the root level. This
ensures a single instance of each service exists
throughout the application lifecycle, maintaining consistent state.

Route Guard Registration: Authentication and authorization guards are registered to protect
routes based on user login status and roles

Route Organization

Routes are organized into four categories based on access requirements:

Public Routes: Accessible to all users without authentication. These include the product
search, login, registration, and informational pages.
The default route redirects to the search page, making product browsing the primary entry
point.

Authenticated Routes: Require a JWT. Allow unsigned JWTs for testing, and in production
allow HMAC 256 or RSA 256 algorithms. These include the shopping cart, checkout flow, order
history, and user profile pages. The LoginGuard checks for token existence before allowing
access.

Role-Based Routes: Require specific user roles in addition to authentication. The
administration page requires admin role, and the accounting page requires accounting role.
These use specialized guards that decode the JWT and check the role claim.

Route Guard Implementation

Route guards implement Angular's CanActivate interface to control route access. The guard
system has a hierarchical structure where more specific
guards depend on more general ones.

LoginGuard is the base guard that checks for a JWT token. If no token exists, it redirects to a
403 error page with an appropriate error message. It also provides a tokenDecode method that
other guards use to extract the JWT payload.

AdminGuard and AccountingGuard build on LoginGuard by additionally checking the user's role
claim in the JWT payload. They use LoginGuard's token decoding functionality and add role-
specific validation.

DeluxeGuard is slightly different—it's not a route guard but rather a service that components
can inject to check deluxe membership status. This
allows components to conditionally show features based on membership level.

Core Services

UserService handles all user-related operations including authentication, registration,
password management, and profile updates. It maintains an
isLoggedIn subject that broadcasts login state changes, allowing components throughout the
application to react to authentication events.

BasketService manages the shopping cart, including adding items, updating quantities,
removing items, and checkout. It maintains an itemTotal
subject that broadcasts the current cart item count, which the navbar displays. The service
coordinates with the backend to ensure cart state
persists across sessions.

ProductService handles product catalog operations including search, filtering, and retrieval. It
communicates with both REST endpoints for
product data and NoSQL endpoints for product reviews, demonstrating the application's
polyglot persistence approach.

Database Design

Sequelize Configuration

Location: models/index.ts

typescript
const sequelize = new Sequelize('database', 'username', 'password', {
 dialect: 'sqlite',
 retry: {
 match: [/SQLITE_BUSY/],
 name: 'query',
 max: 5
 },
 transactionType: Transaction.TYPES.IMMEDIATE,
 storage: 'data/juiceshop.sqlite',

Key Configuration Decisions:

Database Schema

Core Entity Tables

1. Users (Authentication & Authorization)

Design Notes:

2. Products (Catalog)

 logging: false
})

Immediate transactions: Prevents write conflicts by acquiring locks immediately
Retry logic: Handles SQLite's SQLITE_BUSY errors (common in concurrent scenarios) with
up to 5 retries

File-based storage: Single-file database makes deployment and backup trivial

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 username: STRING (default: '')
 email: STRING UNIQUE
 password: STRING (bcrypt)
 role: STRING (customer|deluxe|accounting|admin)
 deluxeToken: STRING
 lastLoginIp: STRING (default: '0.0.0.0')
 profileImage: STRING
 totpSecret: STRING (for 2FA)
 isActive: BOOLEAN (default: true)
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
 deletedAt: TIMESTAMP (soft delete via paranoid mode)
}

Paranoid mode enabled: Soft deletes preserve user data for audit trails
Password setter: Automatically hashes passwords using bcrypt

Role validation: Enforces enum constraint at ORM level
Profile image logic: Admin role automatically gets special default image
Ephemeral accountant hook: afterValidate hook prevents direct creation of
accountant user

Design Notes:

3. Baskets (Shopping Cart)

Design Notes:

4. BasketItems (Join Table)

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 name: STRING
 description: STRING
 price: DECIMAL
 deluxePrice: DECIMAL
 image: STRING
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
 deletedAt: TIMESTAMP (paranoid)
}

Dual pricing: Regular and deluxe member pricing

Paranoid mode: Products can be "discontinued" without losing historical data

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 UserId: INTEGER (FK to Users)
 coupon: STRING (nullable)
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

One basket per user: Enforced at application level via findOrCreate
Coupon field: Stores applied discount codes

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 BasketId: INTEGER (FK to Baskets, non-updatable)
 ProductId: INTEGER (FK to Products, non-updatable)
 quantity: INTEGER
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

Design Notes:

User-Related Tables

5. Addresses

Design Notes:

6. Credit Cards (Payment Methods)

Design Notes:

Many-to-many relationship: Links Baskets and Products

Non-updatable foreign keys: makeKeyNonUpdatable() prevents FK manipulation after
creation
Quantity tracking: Allows multiple units of same product

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 UserId: INTEGER (FK to Users, constrained)
 fullName: STRING
 mobileNum: INTEGER (validation: 1000000-9999999999)
 zipCode: STRING (length: 1-8)
 streetAddress: STRING (length: 1-160)
 city: STRING
 state: STRING (nullable)
 country: STRING
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

One-to-many: Users can have multiple addresses
Validation at ORM level: Phone number range, zip code length, address length

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 UserId: INTEGER (FK to Users, constrained)
 fullName: STRING
 cardNum: INTEGER (validation: 16 digits)
 expMonth: INTEGER (1-12)
 expYear: INTEGER (2080-2099)
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

7. Wallets (Digital Currency)

Design Notes:

Feedback & Support Tables

8. Feedback items

Design Notes:

9. Complaints

Data format: Stores credit card numbers as integers

Future-dated expiry: Year validation 2080-2099
No encryption: Card data stored in plaintext

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 UserId: INTEGER (FK to Users, constrained)
 balance: INTEGER (default: 0)
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

One wallet per user: Enforced at application level

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 UserId: INTEGER (FK to Users, NOT constrained)
 comment: STRING
 rating: INTEGER
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

Anonymous feedback allowed: No FK constraint, UserId can be null

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 UserId: INTEGER (FK to Users, constrained)
 message: STRING
 file: STRING (file path)
 createdAt: TIMESTAMP

Design Notes:

Security Tables

10. SecurityQuestions

11. SecurityAnswers

Design Notes:

Auxiliary Tables

12. Quantities (Inventory)

 updatedAt: TIMESTAMP
}

File attachment support: Stores file path, not binary data

User-linked: Requires authenticated user

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 question: STRING
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 UserId: INTEGER (FK to Users, NOT constrained)
 SecurityQuestionId: INTEGER (FK to SecurityQuestions, constrained)
 answer: STRING
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

Password recovery mechanism: Links users to security questions

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 ProductId: INTEGER (FK to Products, constrained)
 quantity: INTEGER
 limitPerUser: INTEGER (nullable)
 createdAt: TIMESTAMP

13. Recycles (Recycling Program)

14. Photo Wall

15. Captchas (Bot Protection)

16. ImageCaptchas

 updatedAt: TIMESTAMP
}

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 UserId: INTEGER (FK to Users, constrained)
 AddressId: INTEGER (FK to Addresses, constrained)
 quantity: INTEGER
 isPickup: BOOLEAN
 date: STRING
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 UserId: INTEGER (FK to Users, constrained)
 imagePath: STRING
 caption: STRING
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 captchaId: INTEGER
 captcha: STRING
 answer: STRING
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 UserId: INTEGER (FK to Users, NOT constrained)

17. PrivacyRequests (GDPR)

18. Deliveries (Shipping Methods)

Relationship Design

Defined in: models/relations.ts

One-to-Many Relationships

User → Addresses (constrained)
User → Cards (constrained)
User → Baskets (constrained)
User → Complaints (constrained)
User → Feedback items (NOT constrained - allows anonymous)
User → Memories (constrained)
User → PrivacyRequests (constrained)
User → Recycles (constrained)

 image: STRING
 answer: STRING
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 UserId: INTEGER (FK to Users, constrained)
 deletionRequested: BOOLEAN
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

{
 id: INTEGER PRIMARY KEY AUTOINCREMENT
 name: STRING
 price: DECIMAL
 deluxePrice: DECIMAL
 eta: INTEGER
 icon: STRING
 createdAt: TIMESTAMP
 updatedAt: TIMESTAMP
}

User → SecurityAnswers (NOT constrained)
User → Wallets (constrained)
User → ImageCaptchas (NOT constrained)
Product → Quantities (constrained)
SecurityQuestion → SecurityAnswers (constrained)
Address → Recycles (constrained)

Many-to-Many Relationships

Basket ↔ Product (through BasketItems)**

